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Abstract

Four-step convergent synthesis oftrans-fused tetracyclic oxane starting from monocyclic ethereal acetylene
and triflate segments was achieved, which involved the following sequence: (i) connection of two monocyclic
segments; (ii) oxidative formation of�-diketone; (iii) construction oftrans-fused tetracyclic diacetal; and (iv)
reductive etherification of the diacetal. © 2000 Elsevier Science Ltd. All rights reserved.
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Natural polycyclic ethers represented by brevetoxins and ciguatoxin, which have novel structures and
strong biological activities, present the interesting synthetic challenges to chemists.1 One such challenge
which has been actively explored is an efficient convergent strategy for the construction of these large
polycycles.2 In this paper, a four-step convergent synthesis oftrans-fused tetracyclic oxane1, which
could enable an efficient synthetic approach to various natural polycyclic ethers, is described.

Our strategy for the construction of1 (Scheme 1) includes four key steps: (i) connection of monocyclic
acetylene5 and triflate6 segments; (ii) oxidative formation of�-diketone3 from acetylene4; (iii)
construction oftrans-fused tetracyclic diacetal2; and (iv) reductive etherification of2. This convergent
strategy would strongly rely on the successful cyclization of3 into the fused system2. Although no report
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on the cyclization of the 1,8-dihydroxy-4,5-octanedione system have been published, we expected that
the desired cyclization could proceed in a system fixed with two oxane rings.

Segment5 was prepared from73 through a three-step sequence (conversion to8, substitution with
ethynyltrimethylsilane, and removal of TMS) (Scheme 2). Lithiated5 reacted with6 smoothly to provide
4 in 76% yield,4 and which was oxidized with RuO2–NaIO4

5 to afford 3 (62%). Treatment of3 with
TsOH in MeOH–(MeO)3CH produced the desiredtrans-fused cyclic diacetal26,7 (75%). Diacetal2 was
reduced with Et3SiH–SnCl4 to give tetracyclic16,7 (59%).

Scheme 2. Reagents and conditions: (a) 2,6-lutidine (3 equiv.), Tf2O (1.1 equiv.), CH2Cl2,�78°C, 30 min; (b) TMSĈ CH (1.3
equiv.), BuLi (1.3 equiv.), HMPA (1.3 equiv.), THF,�78°C, then8, �78!�20°C, 2 h; (c) K2CO3 (2.8 equiv.), MeOH, 24°C,
3.5 h; (d) BuLi (1.2 equiv.), THF–HMPA (10:1),�78°C, then6 (1.3 equiv.),�78!�20°C, 2.5 h; (e) RuO2�H2O (cat.), NaIO4

(3.8 equiv.), CCl4–MeCN–pH 7 buffer (1:1:1.5), 26°C, 30 min; (f) TsOH�H2O (3.1 equiv.), MeOH–(MeO)3CH (2:1), 24°C, 5
h, then 44°C, 44 h; (g) Et3SiH (18 equiv.), SnCl4 (8 equiv.), CH2Cl2, 0!23°C, 5 h

Thus, an efficient and convergent synthesis of1 from monocyclic segments5 and6 was achieved in
only four steps. Application of the present results to the synthesis of natural polycyclic ethers is currently
under way in our laboratory.
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